陶瓷基板能夠很好解決COB的可靠性問題,但是其材料成本相對較高,且具有一定技術難度。但目前國內能量產陶瓷
COB光源的企業數量還是在不斷增加,產品應用領域也逐漸擴大。都禾光電自產的
COB光源的材料及可靠性都得到了改進,其光學技術也得到了進一步提升。
COB光源具有較好的散熱功能。進而可簡化光源系二次光學設計并節省組裝人力成本。都禾光電是垂直整合中、下游產業鏈的高新企業,1996年進入LED產業至今,在集成封裝和
COB光源領域都形成了相應的規模化生產。全光譜
COB光源2)采用ASM的焊線設備將晶片11與基板12過導電線13進行電性連接,使晶片11與基板12上的電路實現導通,焊接完成后,對產品進行檢測,不合格的產品重新返修,合格的產品轉入下一道工序;3)在基板12上設置第一層圍壩14,晶片11及導電線13處于第一層圍壩14所包圍的區域內,將設置好第一層圍壩14的基板12放進烤箱進行烘烤,待第一層圍壩14固化后取出全光譜
COB光源
表2:樣品光電參數3、
COB光源的熱分布機理從上節的測溫實例中可知,
COB光源的膠體溫度最高可達125℃,而目前大部分芯片能承受的最高結溫不能超過125℃,很多燈具廠商認為發光面的溫度超過125℃,芯片的溫度應該會更高,繼而擔憂
COB光源的可靠性。。當然,亦可以采用自然固化的方法使第一層圍壩14固化;在第一層圍壩14上設置第二層圍壩15,將設置好第二層圍壩15的基板12放進烤箱進行烘烤,待第二層圍壩15固化后取出,亦可以采用自然固化的方法使第二層圍壩15固化,此時第一層圍壩14以及第二層圍壩15形成整體式的整體圍壩。根據實際需要,可在第二層圍壩15上設置繼續設置圍壩,這樣形成整體圍壩的層數更多,使得整體圍壩的高度更高,設置圍壩的目的是為了后面的封膠做準備,而設置多層的整體圍壩是為了增加圍壩的高度,亦可用其他方法增加圍壩的高度,如優化圍壩設備等;全光譜
COB光源在散熱方面(以鋁基板為例):由上圖可以看到MCOB的鋁基板焊接的芯片沒有絕緣層,熱量直接導入鋁層上,而鋁層導熱率271~320w/m.k全光譜
COB光源
COB主要是應用于商業照明領域,如軌道射燈、天花燈、MR16、GU10等燈具中,并成功解決了兩方面問題:一、
COB光源由于熱量集中帶來的散熱問題,通過結構的設計保證了散熱的通暢,確保了
COB光源在工作期間結溫在安全值以下;二、采用鱗甲結構的反光杯或透鏡結構,解決了燈具光斑的色均勻性。這兩個方面的技術突破,使得國星光電COB燈具壽命及光品質有保證。。熱量快速導出,延長平面光源使用壽命。COB鋁基板的芯片熱量有絕緣層的熱阻,而絕緣層的導熱率為0.4~3.0w/m.k,這樣阻撓芯片的熱量往下傳遞。散熱比MCOB平面光源要慢很多。

全光譜
COB光源2、使用的支架不同LED集成光源使用的支架只有10W,100W,500W等幾種方方正正的支架,其材質以銅為主,且支架都帶有2個邊腳全光譜
COB光源小結
COB光源在封裝上采用的是將芯片直接貼裝到基板上方,熱阻較SMD器件要小,有利于芯片散熱,實際工作中芯片的結溫遠低于芯片允許的最高結溫。由于光源采用多芯片排布,可在較小發光面實現高流明密度輸出。光源工作時,熒光粉和硅膠會吸收一部分光轉換成熱,高光通量密度輸出會導致發光面熱量較為集中,導致發光面的溫度較高。如果采用熱電偶直接測量發光面的溫度,熱電偶的探頭也會吸光轉換成熱,使溫度測量值偏高。。而
COB光源所使用的支架則有很多種尺寸,其形狀有方形,長方形,橢圓形等尺寸不一的幾十種支架,其材質以鋁為主,也有銅制和陶瓷制的支架,一般都不帶邊腳。