圖2:錯誤的溫度測量方式因此,為避免光對熱電偶的影響,建議使用紅外熱成像儀進行溫度測量,紅外熱成像儀除具有響應時間快、非接觸、無需斷電、快速掃描等優點,還可以實時顯示待測物體的溫度分布。紅外測溫原理是基于斯特藩—玻耳茲曼定理,可用以下公式表示。集成光源訂制2)采用ASM的焊線設備將晶片11與基板12過導電線13進行電性連接,使晶片11與基板12上的電路實現導通,焊接完成后,對產品進行檢測,不合格的產品重新返修,合格的產品轉入下一道工序;3)在基板12上設置第一層圍壩14,晶片11及導電線13處于第一層圍壩14所包圍的區域內,將設置好第一層圍壩14的基板12放進烤箱進行烘烤,待第一層圍壩14固化后取出集成光源訂制

與傳統LED封裝技術相比,COB面板光源光線很柔和,具有非常大的市場。目前市場上做COB封裝的企業數量在逐漸增多,COB基板材料也有了改進,由早期的銅基板,發展到鋁基板,再到目前部分企業所采用的陶瓷基板,逐漸提高了
COB光源的可靠性。。當然,亦可以采用自然固化的方法使第一層圍壩14固化;在第一層圍壩14上設置第二層圍壩15,將設置好第二層圍壩15的基板12放進烤箱進行烘烤,待第二層圍壩15固化后取出,亦可以采用自然固化的方法使第二層圍壩15固化,此時第一層圍壩14以及第二層圍壩15形成整體式的整體圍壩。根據實際需要,可在第二層圍壩15上設置繼續設置圍壩,這樣形成整體圍壩的層數更多,使得整體圍壩的高度更高,設置圍壩的目的是為了后面的封膠做準備,而設置多層的整體圍壩是為了增加圍壩的高度,亦可用其他方法增加圍壩的高度,如優化圍壩設備等;集成光源訂制在散熱方面(以鋁基板為例):由上圖可以看到MCOB的鋁基板焊接的芯片沒有絕緣層,熱量直接導入鋁層上,而鋁層導熱率271~320w/m.k集成光源訂制

圖1:熱阻結構示意圖1、常用溫度測量方法比較常用的溫度傳感器類型有熱電偶、熱電阻、紅外輻射器等。熱電偶是由兩條不同的金屬線組成,一端結合在一起,該連接點處的溫度變化會引起另外兩端之間的電壓變化,通過測量電壓即可反推出溫度。熱電阻利用材料的電阻隨材料的溫度變化的機理,通過間接測量電阻計算出溫度。。熱量快速導出,延長平面光源使用壽命。COB鋁基板的芯片熱量有絕緣層的熱阻,而絕緣層的導熱率為0.4~3.0w/m.k,這樣阻撓芯片的熱量往下傳遞。散熱比MCOB平面光源要慢很多。

集成光源訂制1)在LED光源前增加一層不完全透光的膜(擴光板)。此方案有個大問題,當時LED的發光效率不高,擴光板使得整體光效更低了熒光膠的溫度高于芯片溫度是因為
COB光源的芯片數量和排列密度高于比普通的SMD器件,通過熒光膠的光能量密度明顯高于SMD器件,熒光粉和硅膠都會吸收一部分的藍光轉換成熱,加上硅膠熱容與熱導率較小,導致熒光膠的溫度急劇上升,因此
COB光源工作時熒光膠的溫度會遠高于芯片溫度。。2)從改善光源入手,在光源端消除“鬼影”集成光源訂制。這就是COB最初的發展動機,可是很快就被放棄了。原因很簡單,COB屬于二次封裝,技術和工藝相對復雜,以當時的技術單片COB只要超過35W就沒有辦法在批量生產中保持質量穩定,其光效、散熱也比不上表面貼裝。